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1100 Optimal Control of Delta Salinity   
[NOTE: In a project funded by DWR’s Delta Modeling Section, Section member Eli Ateljevich 
completed a civil engineering doctoral dissertation on December 19, 2001.  This chapter is a 
summary of that work; a complete copy of his dissertation is on file with the University of 
California, Berkeley.] 

10.1 Introduction 
Efficient control of salinity in the Delta is a subject that pervades the work of the Department’s 
Modeling Support Branch.  Water quality constraints are important in current State Water Project 
(SWP) operations, and even more so under the high-growth scenarios considered in water project 
planning.  Because of this broad context in which salinity control plays a role, studies of salinity 
compliance have traditionally been incorporated into a larger modeling problem that goes 
something like this: 
 

 
 Create a model of water project operations (CALSIM), and 

 Include a module to model salinity intrusion and stipulate minimum inflows required to meet 
salinity standards (ANN, G-Model, etc). This constraint will be active during a fraction of the 
simulation period. 

 
Two important simplifications are represented in this approach.  The first is that the salinity 
module is, by computational necessity, an empirical surrogate for a physical model such as 
DSM2.  The second is that the inflow requirement is calculated one time step at a time.  The flow 
history up to the current time step is accepted as a fait acompli, and the calculations for the 
current step do not reckon the costs of putting the system into a costly position later.  In 
optimization, this is known as a greedy treatment of time. In the present case, it is compounded 

y the use of large computational time steps. b
 
Ateljevich (2001) tackles salinity control using a tack that is complementary to the traditional 
one: the SWP context is simplified, but the physics and the time component are treated in more 
detail.  Under these assumptions, the optimal water cost compliance problem is an optimal 
control problem, the solution to which is the optimal schedule of upstream releases into the Delta 
and exports.  The technical details of this problem make up the bulk of the dissertation. 
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10.2 Minimum Water Cost Compliance 
The minimum water cost compliance problem is posed over a fixed time interval of several 
weeks or months.  Salinity appears as an important operating constraint, and stochastic 
influences are neglected.  The features of the problem are as follows: 
 

 The cost function is the sum or cost over time of upstream releases. 
 

 The volume of pumping over the optimization interval is fixed as a constraint 
 

 Salinity constraints are imposed at one or more monitoring stations in the interior of the 
Delta. 
 

 Delta dynamics are modeled using physical conservation equations of mass, momentum, 
and salinity transport. 
 

 Physical bounds are imposed on the control variables to represent pumping capacity, 
minimum outflow requirements, and uncontrolled Delta inflows.  

 
Variants of this formulation can be devised.  For instance, pumping can be priced as a benefit 
rather than being fixed as a constraint.  The salinity constraint may also be imposed on 
instantaneous or period-averaged salinity (the latter is the important case in the Delta).  Finally, 
additional regularization components may be required to make the problem mathematically well 
posed. 
 
The results of the dissertation indicate a high degree of control over salinity, particularly over 
daily-averaged values.  The water cost under optimization is about 10% better than the cost 
obtained under very careful trial-and-error experiments and about 15-20% better than that of a 
good guess.   The minimum water cost can also help to refine definitions of water cost and 
carriage water, which are usually calculated with rather gross assumptions about the time 
trajectory of pumping and inflow.  Carriage water calculations are shown to be quite sensitive to 
the assumption that both pumping and inflow are constant over time. 
 

10.3 Optimal Control Solutions 
Optimal control solutions can be either hard to obtain or erratic.  The features that go into the 
formulation of a well-posed optimal control problem are discussed at length in Ateljevich (2001).  
One issue deserves highlighting because it is critical to understanding what types of solutions can 
be obtained.  That issue is consistency – what happens to the solution as the space and time steps 
are refined. 
 
When expressed in continuous time, the optimal water cost compliance problem requires an 
“infinite” number of decisions – upstream inflow and pumping must be determined at an infinite 
number of times.  This level of detail is not needed in practice, but water modelers are 
accustomed to discrete models that, under refinement, home in on a unique, physical continuous 
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solution.  Constrained optimal control problems are not naturally so well behaved, even when a 
consistent model is used for the physics.  Unless the problem is properly regularized, the 
prescribed control (if it exists) may exhibit infinite switches between the minimum and 
maximum control (chattering) or other types of singular or impractical behavior.  Discrete 
solvers trying to home in on such a degenerate solution will tend to stall in ways that are time-
step specific and very difficult to diagnose (often the diagnosis is “local minima” even when 
there is no evidence that any sort of local minimum is actually achieved or even exists).  Besides 
being impractical, such wildly fluctuating controls violate the gradually varying flow 
assumptions under which the flow model is formulated. 
 

10.3.1 Parameterization 
At the other end of the spectrum, the problem can be parameterized crudely by taking one 
control variable per large time step (say several days or weeks), and using a representation that is 
piecewise constant or linear.  This characterization involves a small number of decision 
variables.  The outcome of optimization over such a restricted control space will be physically 
reasonable because the parameterization is too crude to represent the sort of chatter and pulses 
that occur when optimal control solutions go awry of common sense.  On the other hand, one 
control per week in a system dominated by 25-hour and 14-day cycles may not be refined 
enough – important characteristic time scales of the problem are ignored or crudely represented. 
The catch is that the problem cannot be refined too much without losing the stability the crude 
parameterization imparts on the system. 
 
The foregoing discussion allows for physically meaningful solutions to be developed in two 
ways.  First, we can simply toss aside the notion of the “underlying truth” and accept a 
parameterized solution to the unregularized problem.  Formal convergence is unlikely – the 
solution will always be time-step dependent.  However, it may be possible to verify using a 
sensitivity analysis that the solution is not erratically dependent on time step in some 
neighborhood of interest – say, comparing four-day controls to two-day controls. In this case, the 
character of the actuators of the controls (pumps, reservoir gates, etc.), which operate with 
restricted complexity, may physically justify the use of a crude time step. 
 

10.3.2 Regularization 
Alternatively, we can add small regularization terms to the continuous problem, so that it does 
have a well-behaved solution.  One common way to avoid discontinuities is to add a very small 
quadratic penalty on the time derivative of the control variables, which penalizes extremely sharp 
jumps and is insignificant the rest of the time.  It is then possible to develop a solution algorithm 
that is consistent with this regularized problem and stop at whatever level of time detail seems 
appropriate.  The regularization approach leads to similar water cost as the parameterized 
approach, but not to similar control sequences (usually the regularized solution has smaller 
extreme values). 
 
Regularization of the problem requires extra development time and software designed for 
optimal control, but when applied it is much quicker to converge.  This technique cannot be 
applied to DSM2 because some details in the implementation of DSM2-QUAL make it difficult 
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to calculate the derivative of the objective function with respect to the control variables at small 
time steps.  Such calculations are usually made using variational (adjoint) techniques.  Without 
this possibility, finite differences approximations must be used, perturbing the controls one at a 
time.  This method is slow and inexact compared to variational methods. Parallel computing of 
DSM2 can be used to reduce the calculation time enough to make finite differences practicable 
(Finch and Kao, 1992). 
 

10.3.3 Comparing Parameterization and Regularization 
Because of these limitations, the differences between regularization and parameterization cannot 
be investigated directly for DSM2, although they can be illustrated on simplified problems.  
Figures 10.2 and 10.3 shows results for an optimal water cost control problem on a contrived 1-
channel domain (Figure 10.1). The simplified problem has an upstream inflow, mid-stream 
pump, period average salinity constraint, ocean boundary, and fairly large dispersion.  The 
numerical model used for the hydrodynamics is a four-point box scheme similar to that used in 
DSM2-HYDRO.  The numerical scheme for salinity transport is the Flux Based Modified 
Method of Characteristics with a MUSCL limiter as described by Roache (1992).  Derivatives 
were obtained using variational methods.  A minimum flow of 200 cfs was enforced for inflow 
(0 cfs for pumping); the upper bounds were very high and did not become active during the 
optimization. 
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Figure 10.1: Sample 1-Channel Domain with Salinity Regulation. 
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Figure 10.2: Regularization Solution to Meet Daily-Averaged Salinity Regulations with 
Control Trajectory for River Inflow (Qr) and Pumping (Qp). 
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Figure 10.3: Parameterization Solution to Meet Daily-Averaged Salinity Regulations based 
on Piecewise Linear Controls for River Inflow (Qr) and Pumping (Qp). 

 
The control solutions in the parameterized and regularized cases are not similar in character – the 
parameterized solution reaches greater extremes than the regularized solution.  However, the 
water cost of the two methods is extremely close, indicating that both methods are good in a 
bottom-line sense.  The solution to the parameterized problem degrades to wild fluctuations at 
time steps of fewer than four hours (not shown); the solution to the regularized problem does not 
change significantly under refinement. 
 
Two features visible in Figure 10.2 are typical and will be seen again in the DSM2 applications 
presented in Section 10.4.  First, there is a very high degree of control on salinity.  The piecewise 
linear daily controls are sufficient to allow the salinity solution to lie almost exactly on the 
regulation except during transitional periods (the beginning, end and times when the regulation is 
changing).  Such “exact compliance” was not a goal of the optimization, but it is interesting to 
see that it can be achieved in a deterministic modeling setting. 
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Second, controls produced by the optimizer in the final few days of the problem have a greedy 
character. Water released in the final time steps will not affect salinity at the monitoring station 
until after the optimization is over.  At the same time, this water has a cost.  Under optimization, 
releases in the final time steps will therefore naturally be set to the minimum value.  This often 
leads to a situation where salinity in the final time step is compliant, but increasing – an 
infraction in the next time step is imminent.  Methods for dealing with end-of-period behavior 
are enumerated in some detail by Ateljevich (2001), and include constraints and penalties on the 
final value of salinity or its time derivative.  These methods generally did not work as well as 
just padding the problem with some extra time.  Fortunately, the earlier part of the example 
solution (before day 15) is not particularly sensitive to the way the end-of-period effects are 
handled. 
 

10.4 Experiments Using DSM2 
Only the parameterized control approach was available for optimization using DSM2, where 
finite differences estimate derivatives.  Nevertheless, it is possible to obtain solutions that are 
reasonably stable and exhibit most of the behavior expected from experiments using a more 
rigorous approach on a simplified domain. 
 
As an example problem, Ateljevich (2001) used parameterized controls to examine a 1994 
compliance problem (Creel, 2000), in which reliance on an incorrect gage allowed salinity to 
approach the legal limit at the Contra Costa Water District pump intake at Rock Slough  
(Figure 10.4).  The error was discovered and pumping was curtailed for a period of about one 
week to bring salinity levels back down.  The Sacramento River inflow and combined export 
pumping rates are shown in Figure 10.5.  The Delta Cross Channel was open the entire time.  As 
suggested by Figure 10.4, the pulse-like reduction in pumping overcompensated, causing salinity 
to drop by half. 

 
Figure 10.4: Bethel Tract Daily-Averaged EC (in mS) in Fall 1994. 

(taken from Creel, 2000) 
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Figure 10.5: Sacramento River Flow, Combined Exports, and 

Net Delta Outflow in Fall 1994. 
 
The incident has already been the subject of some retrospective water cost analysis by operators, 
though not with the use of optimization.  They compared the abrupt historical reduction in 
pumping to that of a milder “adjusted” reduction begun earlier that was also adequate to achieve 
compliance.  Figure 10.6 compares the actual and adjusted pumping strategies indirectly by 
means of the resulting Delta Outflow Index (DOI), a preliminary estimate of Net Delta Outflow 
(NDO).  Sacramento inflow was held at historical levels.  A comparison of the cumulative water 
cost of the two pumping strategies is shown in Figure 10.7.  More detailed input and output from 
this study are not available. 
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Figure 10.6: Historical and Alternative Delta Outflow Index for 

DWR O&M Fall 1994 Water Quality Study. 
(taken from Creel, 2000) 

 
Figure 10.7: Comparison of the Cumulative Water Cost of Historical Operations to the 

Adjusted Operation for Fall 1994. 
(taken from Creel, 2000) 

 
Operators concluded that: 
 

 the gentle method achieves compliance with a slightly lower water cost; 
 

 the historical pulse achieved lower salinity with only a modest additional water cost. 
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The conclusion leaves open the question of the “cheapest” method, because the historical, pulse-
like pump reduction had a higher cumulative water cost, but also overcompensated for salinity.  
Evidently, the historical pump reduction could been smaller or shorter (or timed differently). 
 
Ateljevich (2001) extends the investigation to consider time-varying Sacramento flow and 
exports, using parameterized controls that are allowed to change every few days.  The dynamics 
of the Delta were simulated using DSM2.  The Sacramento River inflow and exports were 
treated as control variables, with other boundary conditions taken from the historical (IEP) data 
or DWR Delta island consumptive use (DICU) estimates.  The “single step control” of 1,200 
hours (50 days) was compared to finer grain controls of 50-hours and 100-hours.1  The “salinity 
regulation” is an daily average EC of 1,200 µmhos/cm on Old River at Holland Tract.  This is a 
rough surrogate for the 250 mg/l chloride standard for the Contra Costa Canal intake at Rock 
Slough.  Average pumping was fixed, although the pumping schedule was allowed to vary as a 
control variable. The experiment was repeated with average combined export (Central Valley 
Project and State Water Project) rates of 5,000 cfs and 7,000 cfs.  The optimization was carried 
out using a successive linear programming algorithm based on work by Zhang et al. (1985)2.  
Boundary EC at Martinez was estimated using the methods of Ateljevich (2001).  Minimum 
outflow and E/I ratio regulations were ignored in order to study salinity control in isolation. 
 
Figure 10.8 shows salinity and control solutions for the two levels of fixed pumping.  Similar 
solutions were obtained from a variety of starting points.  The optimization algorithm 
occasionally stalls, but when it does not, the minimum that it reaches is the same for all the 
starting points. 
 
Just as in the simplified problem described in the previous section, the salinity trajectory lies 
very close to the regulation.  Again, this was not a goal of the optimization, but is a reasonable 
result.  The closeness of compliance is remarkable in light of how coarse the four-day controls 
are compared to the daily regulation.  It is not well known in the Delta modeling community that 
such control over daily averaged salinity is possible, even in the sterile context of deterministic 
modeling. 
 

                                                 
1 Two and four tide cycles, respectively. Due to limited computational power, the 50-hour controls contain some 
100-hour periods later in the optimization period. 

2 See Ateljevich (2001) for more discussion of algorithms. This one is simple to program and is somewhat 
compatible with the linear programming engine of CALSIM.  Somewhat more robust algorithms are available, 
although they tend to stall due to their use of finite differences. 
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Figure 10.8: Salinity Results and Flows for Minimum Water Cost Optimization for two 

Cases: Average Pumping of 5,000 cfs and Average Pumping of 7,000 cfs. 
 
The control solutions in Figure 10.8 are typical in that a decelerating pulse (high Sacramento 
flow and low combined exports) and relaxation is used to approach the salinity regulation at a 
tangent.  The approach is gentler in the 7,000 cfs average pumping case than it is in the 5,000 cfs 
average pumping case.  After the regulation is achieved, fairly steady values are observed.  The 
spring-neap cycle and the accompanying filling and draining of the Delta have only a minor 
influence on the shape of the controls.  One apparent influence of the spring-neap cycle or Delta 
filling and draining is the driving down of salinity before October 2 in order not to exceed the 
regulation as water levels in the Delta start to increase with the new spring tide (the tide cycle is 
shown in Figure 10.9). 
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Figure 10.9: Martinez Stage and Tidal Average Using Godin Filter for Fall 1994. 

 
Sacramento flow is more dynamic than exports.  This is counter to conventional wisdom –  
pumping curtailment is usually treated as the main control action, on the (apparently 
questionable) assumption that control by means of Sacramento inflow is more expensive.  
Sacramento inflow tends to fluctuate in concert with exports: high flows are matched to low 
exports and vice versa (this is more evident in the 7,000 cfs average pumping case).  This means 
that the E/I ratio fluctuates over a considerable range over the optimization period.  In a 
production optimization in the Delta, the E/I ratio would have to be fixed as an additional 
constraint because it does not arise naturally from water quality control.  
 
Finally, Ateljevich (2001) performs a sensitivity analysis on the time steps for inflow and 
pumping controls.  Only controls coarser than one per day are possible for computational 
reasons.  Given this constraint, it is interesting to question whether the solution is stable for 
various length control periods that are in the neighborhood of several days long and if so, at what 
level of detail the benefits tend to taper off.  In the experiment presented here (from the 5,000 cfs 
average pumping case), the water cost from the 50-hour controls is only about 1% better than 
that resulting from the 100-hour controls and the shape of the control trajectory is similar.  The 
incremental benefits of using a 50-hour time-step instead of a 100-hour time-step are meager 
compared to the 10% reduction in water costs obtained by using a 100-hour time-step instead of 
a single decision.  The time-step sensitivity was not tested for the 7,000 cfs pumping case.  
However because the 7,000 cfs solution varies more over time, the difference between the 
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coarser and finer time steps might be larger than the 1% difference in the results for the 5,000 cfs 
pumping case. 
 

10.5 Extensions 
The optimization methods of Ateljevich (2001) have applications in both operational and 
planning models.  In an operational context, optimization is able to provide an efficient reference 
solution for water cost.  This reference solution can either be used as part of an operator decision 
based on multiple objectives, or it can be used as the “nominal trajectory” in a stochastic optimal 
control problem where the influence of uncertainty in the tide, inflows, and model are taken into 
account.  For now, the main interest in optimal solutions will be heuristic.  An example given 
above is the discovery that the control of salinity by means of extra Sacramento River flow may 
be more efficient than was previously thought. 
 
The extension to planning models requires that the planning model CALSIM treat salinity 
control as a multiple-step procedure.  This is a significant extension to CALSIM, and would 
require surrogate models (ANNs) that not only estimate salinity well at the “bottom line”, but 
also correctly estimate the sensitivity of salinity to individual parts of the recent flow history.  
This is a more stringent fitting standard than the one currently in use.  
 
The application of flow simulations to optimized CALSIM runs would also be facilitated by 
incorporating the formal theory of surrogates recently forwarded by Booker et al. (1998).  Their 
methods formally tackle the idea of using a surrogate (ANNs are specifically addressed) to 
approximate a complicated component (DSM2) in an optimization procedure.  The theory, while 
more expensive than a pure CALSIM-ANN implementation, is able to achieve convergence 
between the optimizer procedure (CALSIM) and the expensive model (DSM2) while using the 
surrogate for the overwhelming majority of the work. 
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